The RISKS Digest
Volume 21 Issue 38

Wednesday, 9th May 2001

Forum on Risks to the Public in Computers and Related Systems

ACM Committee on Computers and Public Policy, Peter G. Neumann, moderator

Please try the URL privacy information feature enabled by clicking the flashlight icon above. This will reveal two icons after each link the body of the digest. The shield takes you to a breakdown of Terms of Service for the site - however only a small number of sites are covered at the moment. The flashlight take you to an analysis of the various trackers etc. that the linked site delivers. Please let the website maintainer know if you find this useful or not. As a RISKS reader, you will probably not be surprised by what is revealed…


Partial Causal Analysis of the December 2000 Osprey Accident
Peter B. Ladkin
Lucent workers charged with selling secrets to Chinese
Citibank's meaningless privacy notice
Vassilis Prevelakis
Fox... hen house...
Bluetooth risks airline safety?
Tom Worthington
Info on RISKS (comp.risks)

Partial Causal Analysis of the December 2000 Osprey Accident

<"Peter B. Ladkin" <>>
Mon, 07 May 2001 17:22:56 +0200


Credit for the following line of reasoning is due in large part to the New
Scientist reporter Duncan Graham-Rowe. The formulation here is (obviously)


The interpretation and reasoning presented here is based entirely on the
publicly-available JAG briefing and Blue Ribbon Panel report documents,
which I shall refer to as JAGB and BRPR respectively.  Although written to
be readable by non-specialists, it employs methods to be found in formal
failure analysis techniques such as WBA. There may be errors in the
reasoning and analysis, although I am reasonably confident that all such
errors are minor.  Please bring any errors you remark to my immediate
attention (email usually suffices). The focus of this note is causal
analysis and I have nothing to say here about social phenomena such as blame
or responsibility.

The Sequence of Events

First, a brief review of what the JAG determined happened in the December
crash. A hydraulic line ruptured in the left nacelle. This line was part of
the primary flight control system hydraulics and activates the swashplate
actuators. There are three such systems, in a partially redundant
configuration. At the rupture point, the line was common to Systems 1 and 3;
System 1 was fully disabled, System 3 was isolated in the left nacelle, but
continued to function in the right nacelle, System 2 worked left and right.

This event caused the nacelle transition to stop, and the PFCS reset button
to illuminate in the cockpit. The aircrew pressed the reset button, as per
procedure. The PFCS computer software then caused "rapid" pitch and thrust
changes to be commanded and actuated. The rotors responded differentially in
time, because the physical actuation authority in each nacelle was
different: the right nacelle had two working hydraulic systems, and the left
nacelle only one. The aircrew pressed the reset button "as many as eight to
10 times [sic]" (JAGB) during the last 20 seconds of flight. The response
asymmetry and resulting flight behavior of the aircraft was directly
responsible for loss of control (LOC) of the aircraft and the aircraft
impacted the ground in a LOC condition.

Proposed Failure Analysis based on JAGB

JAGB says: "The published procedure for responding to [a hydraulic system
failure as multiply indicated in the cockpit] is to press the primary flight
control system reset button. When the primary flight control reset button
was pressed, a software anomaly caused significant pitch and thrust changes
in both prop rotors. Because of the dual hydraulic failure on the left side,
the prop rotors were unable to respond at the same rate. This resulted in
uncommanded aircraft pitch, roll and yaw motions, which eventually stalled
the aircraft.

During the last 20 seconds of the flight, the primary flight control reset
logic was energized as many as eight to 10 times. This, coupled with the
dual hydraulic failure, caused large prop rotor changes. These changes
resulted in decreased airspeed and altitude and a left yaw. The crew pressed
the reset button in their attempt to reset the system and maintain control
during the emergency."

This clearly says
  (*) that the PFCS software caused the PFCS to command "significant
      pitch and thrust changes" and that this software behavior was
  (**) that recycling the reset button "eight to 10 times" was a causal
       factor (in the WBA sense) of "large prop rotor changes", which
       were in turn a causal factor (we might wish to infer: the sole
       causal factor) in the LOC.

What kind of "software anomaly" can this have been? There are, according to
a common taxomony of complex system failures, only a few possibilities. (I
shall use the term "rotor excursion" for a one-time pitch and thrust change
of the sort being talked about here, whatever that may consist in.)

1. A bug: the code did not fulfill the design specification; or

2. The software functioned as designed, but the design was incompatible
   with the overall PFCS control requirements (which implied for this
   situation that the PFCS should not command a rotor excursion); or

3. The software functioned as designed, and the design was compatible
   with the overall PFCS control requirements (that is, the PFCS
   requirements allowed or even implied that a rotor excursion
   should take place in this situation), but rotor excursions
   in this situation were not "expected" nor required by
       (a) the aircraft designers;
       (b) OPS manual;
       (c) crew; or

4. That although a rotor excursion may have been anticipated by
   designers, that the effects of multiple cycling of reset, namely,
   multiple rotor excursions, were not anticipated by
       (a) aircraft engineers;
       (b) OPS manual;
       (c) crew.

I shall say "software bug" for case 1, "software design error" for case 2,
"requirements failure" for cases 3 and 4. I concluded in my Risks-21.33 note
that the JAG had unequivocally indicated a software bug or a software design
error had occurred. I will give my precise reasoning forthwith and I believe
that reasoning is correct. However, after consulting and analysing BRPR, I
see reason now to doubt the truth of the conclusion.

JAGB Quotes

In the light of these possibilities, following comments from JAGB are
relevant. The briefer is Maj. Gen. Berndt, assisted by Lt. Col.  Wainwright
on aircraft technical matters. If unascribed, the quotes are from
Maj. Gen. Berndt.

A. "an anomaly in the control logic in the computer software control
   laws which caused rapid and significant changes to prop rotor pitch
   each time the primary flight control system reset logic was

B. "This anomaly rendered procedures outlined in the [...] NATOPS
   flight manual ineffective."

C. "This mishap was not the result of human factors."

D. [in response to a query: "what does "anomaly" mean exactly?"] "An
   anomaly [here] means that something happened that was not supposed
   to happen, and whether that's a fault of design or structure or
   composition, manufacture or installation, [Maj. Gen, Berndt] do[es]
   not know."

E. [Lt. Col. Wainwright] "The question was what should have happened
   when the PFCS button was reset with the dual hydraulic failure. The
   short answer is absolutely nothing."

F. "The recommendation has been to address the anomaly within the system
   that caused the aircraft to accelerate and decelerate with rapid
   pitch changes over a short period of time."

G. [Wainwright] "The [reset] button is multipurpose. In this
   particular case, it should have done nothing. [...] Because of the
   logic, it lights up. But when you press it, other than putting the
   light out, it shouldn't have really done anything at all.

Interpreting the Quotes: Reasoning to bug or software design error

Quote A clearly says that the anomaly in software-implemented control logic
in software caused rotor excursions. It also says that these excursions
happened upon each reset. Quote D says that something happened because of
the software-implemented control logic that was not supposed to happen. One
of these has the form "A caused B", the other "something with property P
happened because of A". We may presume that the rotor excursions were the
sole relevant causal consequence of the anomaly; I conclude that the rotor
excursions happened and were not supposed to. It does not yet tell us what
requirement is referred to by "not supposed to". It gives us a choice
between 1, 2, and 3(a), but does not distinguish between them.

Quote B entails that one of 3(b) or 4(b) was the case.

Quote C appears to be inconsistent with the other information.  (**) implies
that recycling the button appears to be a causal factor in LOC. Now, either
the pilots recycled the button because (i) it was NATOPS manual procedure to
do so, or because (ii) it was their choice to do so. Either (i) or (ii),
whichever is the case, is a causal factor in recycling the button, which
itself is a causal ancestor of the LOC.  But both (i) and (ii) fall within
the domain commonly termed "human factors". Hence it appears that human
factors phenomena were causal ancestors of the LOC. That is in direct
contradiction to Quote C.  The Marines' testimony appears to be
inconsistent. (That may be because they are not speaking as precisely as I
am trying to.)

Quote G lets us distinguish somewhat between our choice of 1, 2, or 3(a). It
says that pressing the button should have done "nothing", that is, it should
not have caused a rotor excursion. That clearly suggests that the design was
not compatible with control system requirements, and rules out 3(a). It was
therefore a software bug or a software design error.

This is the conclusion contained in my Risks-21.33 analysis.

Quote F puts the anomaly "in the system". Design specification is not
normally considered part of the system by most engineers (although I have
argued elsewhere that this may be mistaken), so I take this quote to support
(in the sense of giving extra credence to) the conclusion that there was a
software bug or software design error.

Software Reparatory Measures

It should now be clear what reparatory measures would be recommended by a
professional software engineer on the basis of this conclusion.  The control
software can be regarded as providing a "service", a particular
functionality, to the PFCS. In the case of a failure of type 1, the behavior
did not provide the service specified in the software design. In the case of
a failure of type 2, the software provided the function specified in the
design, but this was not the service that the rest of the PFCS
required. General prophylactic measure for these cases are:

M.1) For software bugs. Inspect software against design specs; test
     software against design specs; remove bugs.

M.2) For software design errors. Inspect software design against
     PFCS design; perform integrated PFCS bench tests; remove
     incompatibilities between software behavior and PFCS expected

It is significant, therefore, that neither of these two standard
prophylactic measures was recommended by the BRPR.

Quote from the BRPR

The BRPR section on software is short and worth quoting in full.

[begin quote]

The fly-by-wire flight control system is highly dependent on high-quality
computer hardware and software. The logic that is the basis for the many
flight control laws and algorithms must be consistent with the overall
requirement for FO/FS. This implies that if the aircraft suffers any single
failure in the electrical, mechanical or hydraulic parts of the system,
there cannot be any software logic characteristic or failure that would
result in an unsafe condition. The integrated flight control system must be
designed, analyzed, and tested with these facts in mind.

Boeing has the lead role in development and testing of the integrated flight
control system. Their Philadelphia facility has the capability to conduct
integrated hydraulics, flight loads, and software testing using the Flight
Control System Integration Rig. Before the mishap, the facility had limited
pilot-in-the-loop capability. During the downtime, and in response to the
preliminary mishap investigation results, Boeing has upgraded the
capabilities of the integrated simulation facilities and is in the process
of validating a set of off-nominal and failure scenarios that had been
checked only by analysis during the 1996 validation and verification of the
flight software.  Boeing also has begun validating all flight control system
emergency procedures with pilot-in-the-loop simulation runs. In addition,
the company is holding an integrated flight control system review, with
participation from "graybeard" experts from within and outside the company
to review the requirement and the implementation of the requirements in the

Conclusion: The North Carolina mishap identified limitations in the V-22
Program's software development and testing. The complexity of the V-22
flight control system demands a thorough risk analysis capability, including
a highly integrated software/hardware/pilot-in-the-loop test capability.

Recommendation: Conduct an independent flight control software development
audit of the V-22 program with an emphasis on integrated system safety.

Recommendation: Conduct a comprehensive flight control software risk
assessment prior to return to flight.

Recommendation: The V-22 Program should not return to flight until the
flight procedure and flight control software test cases have been reviewed
for adequacy and have been evaluated in the integrated test facilities.

[end quote]

Analysis of the BRPR Section on Software Reliability

There is nothing in the commentary or recommendations that implies M.1 or
M.2. This is remarkable. Instead, the report emphasises integrated system
safety, and integrated test facilities (in which they appear to emphasise
pilot-in-the-loop testing).

Standard system-safety and risk assessment involve identification and
analysis of hazards, including assessing the likelihood of a hazard
condition, and identifying the likelihood that an accident will result from
a specific hazard. The hydraulic failure is a specific hazard; they say from
this hazard "there cannot be any software logic characteristics or failure
that would result in an unsafe condition".  They do not say "result in an
accident", or "result in an unsafe condition or accident". This suggests
that they believe that more factors were involved in the accident than the
software logic alone.

>From the JAGB, we concluded that there was a bug or a software design error
that caused behavior that resulted, along with multiple resets and the
asymmetric physical response of the rotors, in the LOC, which itself
resulted in the accident. An informal WB-Graph of the accident according to
the analysis of JAGB would contain the following chains of causal
factors. (To obtain a partial graph from these chains, superimpose
identically labelled features, e.g., "PFCS behavior" in the first three
chains. I emphasise: the WB-Graph will be partial.)

C1) HF -> multiple resets -> PFCS behavior -> dynamic behavior of AC ->
     -> LOC -> Accident

C2) Physics of AC design and configuration -> dynamic behavior of AC

C3) PFCS intentional design -> PFCS behavior

C4) PFC anomalies -> PFCS behavior

C5) Software subsystem design anomalies or bugs -> PFC anomalies

Prophylactic measures are supposed to break the causal chains somewhere.
Integrated testing including pilot-in-the-loop enables C1 to be broken by
modifying the human behavior that led to the multiple resets, by changing or
modifying procedures. C2 cannot be broken, because it is physically
necessary, although the specific behavior can thereby be changed. No
recommendation is made here to do this. Likewise C3 cannot be broken,
because it represents physical necessity: PFCS design will causally result
in behavior of the PFCS whenever the PFCS is activated (although of course
it will not if the PFCS is never activated). PFCS design may be changed, to
result in different behavior, of course, and this is what I take to be the
purpose of risk assessment: how to mitigate the consequences of the hazard
through PFCS change. C4 may be broken by removing anomalies; similarly C5
may be broken by removing anomalies in the software subsystem.

In a thorough safety audit, all chains that could be broken would be
considered. But the BRPR speaks nowhere above of breaking C4 and C5, because
nowhere is anything approaching M.1 or M.2 suggested. The BRPR concentrates
instead on C1 (integrated testing with pilot-in-the-loop) and modifications
in C3. (We may presume that modifications concerning chain C2 are all
considered in another section of the report.)

Comparing with the goals of the report and the qualifications of the panel
members, this selection is comprehensible only on the hypothesis that these
chains C4 and C5 aren't in fact there. But the JAG report implied that they

Well, are they or aren't they there? JAGB says yes, BRPR implies no.

Suppose they are not there, and that the PFCS functioned as designed and
expected by its engineers. What would the accident scenario look like,
consistent with the other information provided by JAGB?  Considering the
taxonomy 1-4, I think only three possibilities present themselves.

One possibility, suggested by Peter Neumann, is that the basic behavior with
single reset was known, but the behavior with multiple resets was not
considered either in the NATOPS flight manual procedure definition, or by
the designers. The effects of multiple resets was not known. The resulting
behavior turns out to interact badly with the asymmetric hardware response
and resulted in this incident in the LOC.

The second possibility is that the behavior even of a single reset was not
considered in the integrated control systems. It was known by PFCS engineers
that a rotor excursion would be commanded, but the physical characteristics
of that rotor excursion, especially the asymmetrical rotor response, had not
been determined.

The third possibility, and I would imagine the least likely, is that the
potential behavior in this situation was generally anticipated by engineers,
but not known by or to the flight crew.

I believe it is known whether one of these possibilities was the
case. However, it is not inferable from the public information.  It is not
my purpose to speculate. I shall stop here.

Peter B. Ladkin <>  University of Bielefeld

Lucent workers charged with selling secrets to Chinese

<"NewsScan" <>>
Fri, 04 May 2001 06:30:13 -0700

Federal authorities arrested two Lucent scientists and a third man
yesterday, charging them with stealing software associated with Lucent's
PathStar Access Server and sharing it with a firm majority-owned by the
Chinese government. The software is considered a "crown jewel" of the
company. Chinese nationals Hai Lin and Kai Xu were regarded as
"distinguished members" of Lucent's staff up until their arrests. The
motivation for the theft, according to court documents, was to build a
networking powerhouse akin to the "Cisco of China." The men face a maximum
five years in prison and a $250,000 fine. (*USA Today*, 4 May 2001
NewsScan Daily, 4 May 2001, written by John Gehl and Suzanne Douglas,

Citibank's meaningless privacy notice

Thu, 3 May 2001 02:03:04 -0400 (EDT)

Citibank(South Dakota, N.A.) sent a leaflet to its customers to "...tell you
how you can limit our disclosing personal information about you."

Observe what great choice Citibank customers have:


    Categories of Nonaffiliated Third parties to whom we may disclose
    personal information

    Nonaffiliated third parties are those not part of the family of
    companies controlled by Citigroup Inc.

    We may disclose personal information about you to the following
    types of nonaffiliated third parties:

    * Financial services providers, such as companies engaged in banking,
      credit cards, consumer finance, securities and insurance,

    * Non-financial companies, such as companies engaged in direct
      marketing and the selling of consumer products and services

    If you check box 1 on the Privacy Choices Form, we will not make
    those disclosures except as follows. First, we may disclose information
    about you as described above in "Categories of Personal Information
    we collect and may disclose" to third parties that perform marketing
    services on our behalf or to other financial institutions with
    whom we have joint marketing agreements. Second, we may disclose
    personal information about you to third parties as permitted by law,
    including disclosures necessary to process and service your
    Citi Card account.


    Sharing with Citigroup Affiliates (Box 2)

    The law allows us to share with our affiliates any information about
    your transactions or experiences with you.
    Unless otherwise permitted by law, we will not share with our
    affiliates other information that you provide to us or that we
    obtain from third parties (for example credit bureaus) if you check
    Box 2 on the Privacy Choices Form.


The options the clients are given are non-sensical as the bank retains the
right to share information "as permitted by law" with just about everybody.

Let's consider Box 1. Assuming that Citibank does not break the law, if the
customer does not check the box, Citibank can share personal information
with third parties. If the customer checks the box, Citibank "may disclose
personal information to third parties"

So whether Box 1 is checked or not the effect is the same unless Citibank
breaks the law in sharing information with third parties.  Only in this case
checking the box makes a difference. If the box is checked, the customer
essentially asks Citibank to stop performing these illegal activities.

Let us now consider box 2. Regardless of the state of the box, Citibank can
share with its affiliates "any information about [Citibank's] transactions
or experiences with [the customer]."

The information that box 2 is supposed to control is information "obtain[ed]
from third parties". Again if the box is not checked then this information
may also be shared, while if the box is checked personal information may
still be shared unless prohibited by law.

Great choice!

On their web site "" Citibank claims:
    "6. We will tell customers in plain language initially, and at
        least once annually, how they may remove their names from
        marketing lists. ..."

If the language that was used in the leaflet is "plain" then Citibank must
assume that all their clients are lawyers.

In fact the whole purpose of the leaflet is to *pretend* that Citibank cares
about the privacy of the customers, while retaining the right to distribute
the personal information of their customers in any way they like.

I have no problem with that - if I want privacy I can open a dollar account
with a European bank and enjoy the protection of the EU laws.  I *do*
object, however, to being handed a document like that which treats me like
an idiot.

Vassilis Prevelakis, University of Pennsylvania

Fox... hen house...

<Hendrik <>>
Tue, 8 May 2001 19:55:20 +0900

  Microsoft strikes banking deal [Excerpt from AP Internet news service]

  Microsoft Corp. on Monday announced a deal to provide banks with software
  designed to make their Internet transactions ultra-secure.  The
  technology, which works in the Windows 2000 operating system, is designed
  to allow banks to be sure of whom they're dealing with on the Internet.
  It matches a security framework designed by Identrus, an alliance of 150
  of the world's largest banks.  The deal involves Microsoft, Unisys
  Corp. of Blue Bell, Pa., and Ireland-based Baltimore Technologies, which
  has its U.S. headquarters in Boston.  Baltimore is providing its Public
  Key Infrastructure security system, and Unisys is providing help using the
  system.  [Full article at:]

No, there is no risk of me believing this will work.  Maybe owners of
Microsoft Encarta can find the suitable definition of the term
"ultra-secure", when applied in the context of Windows 2000...?

Bluetooth risks airline safety?

<Tom Worthington <>>
Tue, 08 May 2001 12:43:52 +1000

An advertisement by Toshiba in the Australian Financial Review Monday 7 May
2001 (page 10: "Portege 3490 with Bluetooth - always ready to network")
suggests that Toshiba laptops can be routinely carried on aircraft switched
on, with Bluetooth devices transmitting:

> "Imagine two strangers, each carrying Bluetooth-enabled Portege 3490s ...
> In a fraction of a second the Bluetooth module within each detects the
> presence of the other. ... And complete strangers can start playing chess
> together on long flights"

Apart from being misleading as laptop computers are not designed to be left
on while being carried, this appears at odds with routine airline practice
requiring electronic devices to be switched off during take-off. The use of
radio transmitters by passengers is usually prohibited at any time on an
airline. This is discussed in the Draft Advisory Circular AC 91.22 (0),
FEBRUARY 2000, "PORTABLE ELECTRONIC DEVICES" from the Australian Civil
Aviation Safety Authority:

In practice, Bluetooth's very low-power spread-spectrum transmitter would be
unlikely to cause interference to an aircraft's systems. However, it would
be unwise to encourage Bluetooth's use on airlines until this is accepted by
airline safety authorities.

PS: It is possible to use a transmitter in some aircraft. Particularly when
it is a hot air balloon over Parliment and you have a Senator assisting

PPS: More on wireless:

Tom Worthington FACS; Director, Tomw Communications Pty Ltd ABN: 17 088 714 309; Vis.Prof AustralianNatlUniversity; Austrl. Computer Soc

Please report problems with the web pages to the maintainer